

 Queen’s University

Kingston, Ontario, Canada

Mounted Machine Learning Camera
System for Object Detection and Track
Tracing During Hyperloop Operations

Design Team Research Paper (European Hyperloop Week 2023)

Authors:
Kevin Liang, Harsh Kalyani, Noah Chung, Ryan Silverberg, Vince Song, Thomas Zamin

Contributors:
James Kilpatrick, Nicolas Odorico, Julia O’Neil, Noah Warren, Erin Zhang, Saad Alam, Kevin
Gao, Arjun Guliya, Minxuan Luo, Aarav Shah, Owen Billones, Kishore Karan, Thomas
Priftakis, Robert Zielinski, Charlie Bolt, Phoebe Chalmers, Luke Gaylor, Madison O’Brien, Ty
Cymbalista

Publication Date:
June 2023

Publication Location:
https://queenshyperloop.ca

Word Count:
5938 words

Award:
Full-Scale Awards (Technical Aspects of Hyperloop Systems)

https://queenshyperloop.ca/

i

Statement of Originality and Contribution
Following professional engineering practice, we bear the burden of proof for original work. We

confirm that this work is original, and sources are cited appropriately whenever used.

Members of this paper are from the Research & Development (AI & ML) team within Queen’s

Hyperloop: a group of undergraduate and graduate students dedicated to solving advanced

Hyperloop problems with cutting-edge technology and custom equipment.

Name
Full name of
author/contributor

OrganizationTeam
or company of
individual

Content
Content
contributed by
author/contributor

Write-up
Sections written
by
author/contributor

Editing
Sections edited by
author/contributor

Kevin Liang Queen’s Hyperloop
Design Team

Description,
Environment &
Objectives,
Abstract, Results
and Discussion,
Bibliography

Description,
Environment &
Objectives,
Abstract, Results
and Discussion,
Bibliography

All

Noah Chung Queen’s Hyperloop
Design Team

Environment &
Objectives,
Approach 1: Edge
Impulse,
Approach 2:
Python
Application with
Dedicated
Hardware,
Approach 3:
Python
Application with
Dedicated
Hardware

Environment &
Objectives,
Approach 1: Edge
Impulse,
Approach 2:
Python
Application with
Dedicated
Hardware,
Approach 3:
Python
Application with
Dedicated
Hardware

All

Harsh Kalyani Queen’s Hyperloop
Design Team

Introduction,
Approach 1: Edge
Impulse,
Approach 2:
Python
Application with
Dedicated
Hardware,
Approach 3:
Python
Application with
Dedicated
Hardware,
Results and
Discussion

Introduction,
Approach 1: Edge
Impulse,
Approach 2:
Python
Application with
Dedicated
Hardware,
Approach 3:
Python
Application with
Dedicated
Hardware, Results
and Discussion

All

ii

Ryan Silverberg Queen’s Hyperloop
Design Team

Approach 2:
Python
Application with
Dedicated
Hardware

Approach 2:
Python
Application with
Dedicated
Hardware

Approach 2:
Python
Application with
Dedicated
Hardware

Vince Song Queen’s Hyperloop
Design Team

Results and
Discussion

Results and
Discussion

All

Thomas Zamin Queen’s Hyperloop
Design Team

Results and
Discussion

Results and
Discussion

All

iii

Abstract
Research Question
There are many safety factors to consider when designing a Hyperloop system. The main factors

include debris on the track, cracks, and defects in the tunnel. To ensure that these factors are kept

at bay, various sensors and equipment must be added. The additions of these sensors and

equipment can be costly and occupy considerable space. The research question is: how can the

main safety factors be covered without being too expensive or volume consuming?

Overview of Motivation
The motivation for this research stems from two key factors. To develop a more modern safety

system for the Hyperloop pod and to ensure quality assurance throughout transit due to cases

such as faults in systems, obstacles, and faulty sensors. These elements were vital to the research

motivation, as these cases pose risks and potentially destruction of the pod in transit if not

handled correctly. The camera developed from this research aids to prevent these issues.

Presentation of Results
The final product generated by research and execution through different attempts is a camera

system capable of identifying objects and tracing Hyperloop tracks. The product includes

mechanical and hardware designs that allow the system to be mounted on experimental

Hyperloop pods, as well as software capable of working with physical components to meet MVP

requirements. The product uses the YOLO algorithm and Python libraries, such as TensorFlow,

to have the desired functionalities as outlined in the motivation. Several datasets were also

generated and downloaded to train the machine-learning model, which allowed the final product

to identify several common items as proof-of-concept.

The camera system has been designed to accommodate 3D printing as part of the manufacturing

process and mostly uses off-the-shelf hardware components. In terms of software, the Python

programming language was used to develop the various algorithms necessary to train and use

machine-learning models.

iv

Table of Contents
Statement of Originality and Contribution ... i

Abstract .. iii

Research Question ... iii

Overview of Motivation ... iii

Presentation of Results ... iii

General .. 1

Description .. 1

Environment & Objectives.. 2

Research .. 3

Introduction ... 3

Topic & Motivation .. 3

Background Information ... 3

Methodology ... 4

Approach 1: Edge Impulse .. 5

Approach 2: Python Application with Dedicated Hardware ... 8

Approach 3: Python Application Without Dedicated Hardware ... 11

Results and Discussion ... 17

Evaluation of Approaches ... 17

Final Product ... 21

Results Discussion .. 23

Bibliography ... 25

1

General
Description
Queen’s Hyperloop Design Team (QHDT) is a dynamic group of over 150 passionate students

from Queen’s University, Kingston. Collaborating across diverse disciplines, the team shares a

vision to change the future of transportation. Leveraging the immense talent within Queen’s

University, our multi-disciplinary team is committed to pushing the boundaries of innovation and

engineering excellence. This paper serves as a testament to the collective dedication and progress

made towards making Hyperloop a reality. QHDT is also a partner and competitor of the

Canadian Hyperloop Conference (now Hyperloop Global), another annual competition.

With the advancement of technologies in the software and computing industries, there is now an

opportunity for the implementation of advanced computer vision systems to provide numerous

advantages to student-designed Hyperloop pods. In particular, the ability to detect objects and

trace rails have been enhanced with breakthroughs in machine learning models. While camera

systems may not replace sensors completely at the current stage, the ability to visualize the

surroundings of a Hyperloop pod in operation can benefit Hyperloop infrastructure and improve

safety factors of pods. In general, such technologies can reduce accidents, provide developers

with more data to work with, and enhance various systems of a Hyperloop pod. Applications and

benefits of such systems can also be seen on existing train station cameras and rail sensors, as

seen in Figure 1.

Figure 1: Image detection as seen on a camera pointed at train tracks.

As a team, Queen’s Hyperloop has been investigating the numerous applications of machine

learning and machine vision models in Hyperloop systems. Specifically, the team has built and

2

applied object detection and line tracking algorithms to improve Hyperloop pods, which are used

as part of a physical mounted camera system that can be attached to Hyperloop pods rapidly [1].

This research project included both physical and software components that function as a system

when attached to a chassis. While limited, the system also provides data and outputs that can be

used to control other subsystems on an Hyperloop pod.

Environment & Objectives
Machine learning and software development requires a digital environment and relevant tools

that enable the development of software applications. Hence, most of the work done for research

in such areas was carried out on computers and software tools were used to complement the

process. To create an efficient environment to reach goals and complete tasks, all code was

written using Python-compatible Integrated Development Environments (IDEs) and shared using

GitHub. This created a seamless and synchronous development process.

The MVP objective was to create a camera system powered by advanced ML/AI models to

enhance the performance and safety of Hyperloop systems. The camera system was to

incorporate an object detection AI model to accurately identify and localize objects within the

video frame. The model aimed to analyze the visual content and identify defects, debris, and the

future positions of the pod. The model was trained on a dataset that included various object types

to allow for accurate object detection. Monitoring the condition of the track through using the

model would help in detecting any structural damage, cracks, or other abnormalities that would

affect the operation and safety of the system.

The long-term goal was to have an accurate and affordable functioning camera system that can

pass all test cases to ensure a secure and reliable transportation system. The test cases will

include uploading video feeds to make sure the object detection system can identify defects,

debris, and the future position of the pod. The AI model was trained to detect relevant objects so

that appropriate responses can be generated by the model for the Hyperloop control system. The

future positions of the pod will be determined by detecting and identifying the tracks and their

turns, as well as other information provided by various onboard sensors. The system must output

the future positions in a way that can be used to adjust the pod.

3

Research
Introduction
Topic & Motivation

The advancement of transportation technology has always been at the forefront of human

progress. With the emergence of the Hyperloop concept, a new era of high-speed, efficient, and

sustainable transportation is on the horizon. However, as with any innovative system, ensuring

safety and reliability are paramount concerns.

Motivated by the need for an advanced safety infrastructure and a robust quality assurance

process, the team’s research aims to explore solutions that mitigate risks and enhance both

passenger and pod safety during Hyperloop operations. Utilizing a camera-based system will

help to overcome the limitations of traditional sensor and equipment installations, which can be

costly and space-consuming.

The camera system would be attached to individual pods and provide data through machine-

learning tools. The features of this system will allow for prediction of turning angles, identifying

weaknesses or damages of the infrastructure, and detecting objects or humans that may cause

harm to human lives and Hyperloop pods. These features aim to enhance the safety of passengers

on Hyperloop pods while improving operational efficiency of onboard equipment.

Background Information
In this research paper, QHDT addresses the challenge of developing a cost-effective and space-

efficient safety system for the Hyperloop Pod. The objective is to tackle key safety factors,

including debris on the track, cracks, defects in the tunnel, and predict the future position of the

pod for necessary adjustments. By focusing on these factors, QHDT aims to create a modern

safety system that enhances the overall quality assurance of Hyperloop transit.

The core question guiding this research is: How can the main safety factors associated with

Hyperloop systems be effectively addressed without incurring exorbitant costs or compromising

space within the Hyperloop pod?

To ensure efficient collaboration and maintain consistency among team members, all code

development was built using Python-compatible IDEs and shared through GitHub. This approach

facilitates seamless code readability, ease of modification, and synchronization among team

4

members. OpenCV and Python code were used to test and train the AI model. OpenCV is a

computer vision and machine learning software library that provides various tools and algorithms

for video and image processing [2]. Video processing is mainly used for filtering, thresholding,

and transformation. However, the main video processing feature used in the project is feature

detection and extraction. OpenCV includes functions for detecting edges corners and blob in a

video as well as being able to track the detected item through multiple frames of video. Next, this

project took advantage of the machine learning algorithms offered by OpenCV. OpenCV

includes algorithms for clustering, dimensionality reduction, and regression analysis. These

algorithms can be used to group similar objects together, reduce the number of features in a

dataset, or predict the value of a continuous variable based on other factors and patterns.

Testing of the AI model entails using procedurally generated environments and existing videos

to act as proof-of-concept test environments. The procedurally generated environments create a

video where desired objects for detection will pop up in the video at random. Once the AI is

trained to detect these desired objects, the generated environments will be swapped with existing

videos to act as a real-world environment. The existing videos will fine tune the training of the

AI model as factors that may be non-existent in the generated environment. These factors include

false identification (identifying objects that look like the desired objects but are not), lighting

changes, and cluttered or textured backgrounds.

Methodology
The final solution was generated using three different approaches to the problem, each using

different software and hardware designs to attempt as many methods as possible. Four groups of

students were tasked to handle the approaches and try for a final design solution. The

methodologies and results of these groups were classified into the three approaches as shown

below. Note that all approaches occurred roughly around the same period, where limited

communication exists between the groups.

Once complete, the approaches were then evaluated relative to the MVP goals to generate a final

solution from their design choices. This process allowed for multiple software practices and

hardware components to be put through the trial, which improved the overall confidence of the

team when moving forward to the final solution. Moreover, the diverse approaches provided

insights that would otherwise be lost for the problem at hand, which could be explored later in

5

other research projects. The methodology used in this research project is like forming study

groups to investigate certain topics, where multiple groups were tasked to solve an open-ended

problem.

Approach 1: Edge Impulse
The first approach for the system implementation consisted of three subsystems: the sensor

infrastructure, the embedded system, and the user interface. The sensor infrastructure served as a

protective case for the embedded system that housed the camera module, ensuring the safety and

durability of the system’s components. Meanwhile, the embedded system comprised of the

BalenaFin, a Raspberry Pi camera module, and a Raspberry Pi microcontroller. Note that the

case can be 3D printed to ease the manufacturing process. All parts of this design are listed

below in Table 1 and are displayed as an exploded view in Figure 2 and as a complete system in

Figure 3.

Table 1: All materials listed for this embedded system.

Item
No.

Part Description Quantity

1 BalenaFin Carrier board for the Raspberry Pi
microcontroller (9 x 9 x 1.5cm)

1

2 BalenaFin Case Comes with BalenaFin to protect components
(11.5 x 9.5 x 4cm)

1

3 Power Supply 12V 2A Power Supply Adapter 1
4 USB to USB-C Cable To connect BalenaFin to display (32cm long) 1
5 RPI Camera Module Raspberry Pi Camera Module V2 (2.4cm x

2.5cm)
1

6 Camera Case Front Protective case for camera module 1
7 Camera Case Back Protective case for camera module 1

6

Figure 2: Isometric View of the Embedded System. Figure 3: Exploded View of the Embedded System

The microcontroller was programmed with an object and lane detection machine learning model

obtained from Edge Impulse, an open-source collection of pre-trained models [3]. The chosen

model, called “Faster Objects, More Objects” (FOMO), is an “algorithm that enables

microcontrollers to perform real-time object detection, tracking and counting” [4]. It utilized

algorithms from OpenCV, Keras, and TensorFlow and was implemented in Python to identify

and detect any potential hazards in real-time. OpenCV is an open-source library that includes

several hundred computer vision algorithms and was used for performing different tasks such as

object detection and video analysis [2]. The Keras library provides a Python interface for

artificial neural networks as well as acts as an interface for the TensorFlow library [5].

TensorFlow is a machine learning platform that was crucial in the creation of the algorithm as it

processes and loads data, trains models, and implements algorithms into a real system [6]. This

algorithm was trained using the supervised learning method which uses a training set of images

to teach the algorithm. Figure 4 below outlines the process for training the algorithm.

7

Figure 4: Training Process for the Algorithm

The data from the embedded system was transmitted to a user interface, which was as a platform

to present the data to stakeholders. The platform was a website that was developed using HTML,

CSS, and Flask, a Python web-development framework [7]. Wireframes and mockups of the

UI/UX were created using Figma, a collaborative design space for creating high-fidelity designs

of user interfaces. Once the UI/UX design was created using Figma, Tkinter-Designer was used

to convert the Figma design into Python code with the Figma API. Figure 5 below outlines the

methodology to obtain and display the data.

Figure 5: Flow Chart for obtaining and displaying data.

However, despite these efforts, this approach faced several issues. The BalenaFin, which was

initially selected as part of the embedded system, lacked the necessary modularity and was

subsequently replaced with an alternative Raspberry Pi board. The Raspberry Pi boards also

lacked sufficient computational power, leading to low frame rates and frequent screen freezes.

They could not handle the required tasks of both computing and displaying information.

Moreover, the pretrained FOMO model was incompatible with the BalenaFin board, further

hindering implementation and undermining the system's feasibility. Given these limitations and

8

issues with the selected components, an alternative approach had to be pursued to achieve the

desired functionality and reliability in the system.

Approach 2: Python Application with Dedicated Hardware
The second approach utilized three subsystems: sensor infrastructure, machine learning model,

and user interface.

Instead of using a camera as the main source of detection, this approach was attempted using

LiDAR sensors. LiDAR is an acronym for light detection and ranging as it uses light pulses to

gather three-dimensional information about the tunnel the hyperloop pod will travel in [8].

LiDAR will have a longer range than a camera and will have an easier time keeping up with

1000km/h speeds. However, LiDAR is not able to sense colour which may cause issues as small

cracks and debris may not be sensed by lidar and would need to rely on color to be sensed.

Figure 6 is a visual representation of a LiDAR scan provided below.

Figure 6: Visualization of the LiDAR scan

The machine learning model utilizes a Python library known as Scikit-learn, which provides

access to a type of commonly used type of algorithm called support vector machines. They sort

given data into classes, which are the categories given in the labels of the training dataset. For

example. If the support vector machine is given images of fruit labelled either “apple” or

9

“orange,” the support vector machine will sort a new, unlabeled picture, into these two

categories. Then, the team used TensorFlow, a Python library developed by Google which

simplifies the implementation of machine learning [6]. It has pre-existing machine learning

models in the form of neural networks to help get projects started and is overall easier to

implement compared to other similar frameworks. The neural network itself is a more complex

version of a classification algorithm. It is made up of layers which “weight” features/attributes of

the data (edges, size, etc.) and compute information from sensors in matrices. A loss function is

also defined, which compares the network’s predictions on test data to reality and updates it by

changing the weights and computations accordingly. These two parts together form the machine

learning model.

For this approach, a custom-made dataset was implemented, and the pre-existing model was

trained with it. When training a machine learning model to a new dataset, it is important to note

that the more images there are the better the dataset is. Also, there should also be a balanced

number of images for each object that a model is trying to classify. As the specificity of the

model increases, the more specific the labels will be, but also the images as the model must be

able to distinguish between two similar objects what this means is that as you want to distinguish

between two similar objects the inputs need to reflect how they are different.

The machine learning model is integrated with the LiDAR sensors using a fully embedded

system. An Orange Pi 3 LTS is sufficient for image processing and is used as the main CPU for

the system. Once the image is processed and should an object be detected, it is sent first to the

Hyperloop controller to minimize latency, then is shown to the user on a screen mounted to the

Hyperloop pod. This entire system is powered by the Orange Pi since the power draw will be so

low that it will not rely on power from any of the other Hyperloop subsystems. A flow chart

depicting the pattern of the vision sensor system process described above can be seen below in

Figure 7.

10

Figure 7: Flow Chart for this approach.

The user interface was created using Flask, a lightweight web framework that can be used to

easily create web applications. The user interface uses green lines to follow and detect the tracks.

Then, a pink rectangle is used to detect irregularities or damage that the pod may come across.

Finally, if an irregularity is detected, the user will be notified and prompted with the appropriate

action. Figure 8 shows the proposed user interface.

Figure 8: The User Interface for this approach.

11

In conclusion, the second approach utilizes LiDAR sensor instead of cameras to detect tracks and

irregularities in the hyperloop tunnel. The LiDAR sensors relay their imaging to the Orange Pi 3

LTS where the images will be processed, and the machine learning model will scan for tracks

and objects. Finally, the outputs from the machine learning model will be displayed on the User

Interface with a visual and verbal representation of the detected objects.

Approach 3: Python Application Without Dedicated Hardware
The last approach was a system composed of three subsystems: the hardware system, back-end

software, and user interface. The hardware system was comprised of a chassis adjusted to a

protective case for the camera. This was done to reduce the amount of 3D printing required as

the battery pack and Raspberry Pi both already have exterior casings. This change also allowed

for an ease of access to the camera for repairability. Figure 9 shows the different views of the

camera chassis.

Figure 9: All view of the proposed chassis.

The backend software consists of two complementary algorithms, namely an object detection

algorithm and a lane detection algorithm. To achieve real-time object detection, the team

implemented the renowned “YOLO (You Only Look Once)” algorithm. YOLO excels in swiftly

detecting objects within its field of view and accurately determining their relative positions,

12

making it well-suited for deployment in a fast-moving pod [9]. Conversely, the lane detection

algorithm incorporates a fusion of multiple algorithms to accomplish its intended purpose. These

algorithms used Canny Edge detection and probabilistic Hough Transformations, which

effectively converted detected edges into lines [10]. By employing these techniques, the

algorithm proficiently identifies and tracks lane boundaries, contributing to enhanced navigation

and path planning for the pod. After developing a machine learning model, it is imperative that it

is trained using an appropriate dataset. Recognizing the significance of this process, the team

adopted a pragmatic approach by utilizing readily available datasets from platforms like Open

Images Dataset [11]. This platform offers a vast array of pre-existing datasets encompassing

hundreds of objects, streamlining the training phase of the model. As a proof-of-concept, the

model has been trained to identify specific items. (See Figure 10).

Figure 10: Trained model being able to detect objects.

The lane detection algorithm operates on a continuous stream of real-time video input,

processing each frame individually to detect and track lane boundaries. The process involves a

series of steps that enhance the image quality and isolate the lane lines for accurate identification.

Initially, the oncoming video is divided into discrete frames. Each frame undergoes pre-

processing, wherein the colours are transformed into grayscale and a blurring technique is

13

applied to reduce noise and enhance edge detection accuracy. The Canny Edge detection

algorithm is then employed to extract the edges from the pre-processed grayscale image. This

conversion results in an image that highlights the prominent edges and lanes within the frame. To

further refine the edges, a mask is applied to exclude regions that are less likely to contain lane

markings. Subsequently, probabilistic Hough Transformations are used to identify line segments

that constitute the lane, which are then averaged out into two separate lines representing the left

and right lane boundaries. To provide visual feedback to the user, the identified lane lines are

superimposed onto the original frame and are outputted to the user at the same frame rate as the

original video, ensuring real-time visualization of the lane detection process. Figure 11 below

outlines a flowchart for the lane detection algorithm.

Figure 11: Flowchart for lane detection code highlighting all the major steps taken by the code to detect a lane.

One of the primary advantages of this lane detection algorithm lies in its simplicity and

versatility. It offers a straightforward implementation that can be easily understood and

customized by users. Furthermore, its versatility enables optimization for various use cases, such

as low-light conditions, high-speed scenarios, or complex tracks with numerous turns. Figure 12

below shows images that demonstrate the lane detection algorithm in action.

14

Figure 12: Images to demonstrate lane detection.

The front-end of the software is a user-friendly interface designed to provide real-time updates

during the operation of the Hyperloop pod. It consists of two prominent panels, each serving a

distinct purpose. The first panel displays a live video feed captured by the pod's camera, while

the second panel presents updates on any objects detected within the camera feed. Below these

panels, a status bar is located, which relays alert and warning messages if any abnormalities are

detected during the pod's runtime. When the object detection algorithm identifies an object

within the video feed, in addition to displaying the relevant information in its designated panel,

the status bar undergoes a visual change from a neutral state to display an alert message

throughout the duration of the object detection process. This alert message serves as an indicator

to the user that an object has been detected and requires attention. If the object being detected is

located on the track and poses a potential collision risk with the pod, the status bar displays a

waring message specifically indicating that the object is obstructing the pod’s path. In scenarios

where the lane detection algorithm detects that the pod is deviating from the track, the status bar

presents a warning message stating that the pod is deviating from its intended path. This warning

message serves as a prompt for the user to take corrective measures to ensure the pod remains on

the designated track. Additionally, if the lane detection algorithm fails to detect the lane lines

altogether, the status bar switches to display a warning message indicating that the pod's path is

blocked. This message signals that the algorithm is unable to accurately identify the lane

boundaries, potentially resulting in unsafe navigation conditions. In cases where both the object

detection and lane detection algorithms trigger warning messages simultaneously, priority is

given to the lane detection warning message. This decision assumes that the object detection

panel will already highlight the presence of any significant objects that the pod may encounter,

emphasizing the importance of displaying the lane detection warning message to draw attention

15

to potential deviations from the designated track. Overall, this user-friendly interface offers a

comprehensive and intuitive means of monitoring the pod's operation, providing real-time video

feedback, object detection updates, and crucial warning messages to ensure the safety and

efficient functioning of the Hyperloop pod. Figure 13 shows the full display of the UI for lane

detection. Figure 14 shows the display of notifications for the user. Figure 15 is a flowchart for

the lane detection code.

Figure 13: Fullscreen display of the UI running a lane detection test video.

16

Figure 14: Display of neutral status message (Top), object detection alert (Second Top), object detection warning message
(Middle), pod path deviation warning message (Second Bottom), pod pathway being blocked warning message (Bottom).

Figure 15: Flow chart of the lane detection algorithm.

Finally, the integration between the camera and the computer running the UI software is linked

using a P2P (Peer-to-Peer) Connection. This UI software, in the form of an executable, connects

to the vision sensors computer and send all relevant information to the UI. This means that the

17

UI runs independently from the machine. With this design the UI can also be stored on a USB

key and transported to any relevant operator with ease. The P2P connection will be done via an

ethernet cable connecting to the machine’s onboard computer. The flowchart below shows the

process of the system in Figure 16.

Figure 16: Flowchart of the P2P connection approach.

Results and Discussion
Evaluation of Approaches
Valuable lessons were learned from the three approaches to the problem, especially regarding the

choices of components and software practices. It is apparent that certain methods worked

effectively individually but had issues when integrating with other components. Conversely,

certain design choices worked well when combined as a package but are ineffective in terms of

performance or simply cannot meet the minimum viable product. To create the final product and

ensure that the solution meets all functional requirements, all three approaches were first given a

performance score using an evaluation matrix. These scores would then be used to select certain

design choices that hold high influence for higher scores in relevant categories, which would

then be used to piece together the final product.

The effectiveness of each approach was evaluated using the following evaluation with criteria

listed and explained in Table 2 to justify the given scores.

Table 2: Criteria to evaluate the solutions.

Score 1 2 3 4 5
Safety Physical

design is
Physical
design is

Physical
design is

Physical
design is safe;

Physical
design is safe;

18

not safe.
users’

safety is in
danger.

somewhat
safe;

however,
precautions
need to be

taken while
using the
device.

relatively
safe, with a
slight risk to
user safety.

however,
improvements
can be made
to decrease
the user’s risk
of danger.

there is no
risk to user
safety

Appearance Physical
design does
not exist.
Missing
components
/ no
protective
casing.
UI/UX is
very
difficult to
use and
very
unaesthetic.

Physical
design is dull
and bulky.
None of the
components
are enclosed
in a
protective
casing.
Design is not
aesthetic nor
uniform.
UI/UX is
complicated
and not
aesthetic

Physical
design is
bulky and
rough. Most
components
are not
enclosed in a
protective
casing.
Design is not
very aesthetic
and uniform.
UI/UX is
somewhat
complicated
but aesthetic

Physical
design is
somewhat
sleek. Most of
the
components
are enclosed
in a protective
casing. Design
is somewhat
aesthetic and
uniform.
UI/UX is
somewhat
simple and
aesthetic

Physical
design is
sleek. Each
component is
enclosed in a
protective
casing.
Design is
aesthetic and
uniform.
UI/UX is
simple and
aesthetic

Functionally UI/UX
does not
function /
exist.
Hardware
component
is not safe.
Design is
not
compact or
easy to
apply

UI/UX is
difficult to
use.
Hardware
component is
not safe.
Design is not
compact and
is difficult to
apply.

UI/UX is
somewhat
difficult to
use.
Hardware
component is
mostly safe.
Design is
compact but
difficult to
apply.

UI/UX is
somewhat
easy to use.
Hardware
component is
safe. Design is
somewhat
compact and
easy to apply.

UI/UX is easy
to use.
Hardware
component is
safe. Design
is compact
and easy to
apply

19

Requirements Does not
detect
objects. No
UI/UX
component.
The model
does not
work/exist

Detects
objects up to
10m ahead or
less and 1m
to the side or
less with
some errors.
UI/UX does
not produce
warning
when object
is
approaching.
Machine
Learning is
not used at
all

Detects
objects up to
10m ahead or
less and 1m
or less to the
side without
errors. UI/UX
produces
warning
when object
is
approaching
with lots of
errors.
Minimal
Machine
Learning
aspects

Detects
objects up to
20m ahead
and 2m to the
side with
some errors.
UI/UX
produces
warning when
object is
approaching
with some
errors.
Aspects of
Machine
Learning is
implemented.

Detects
objects up to
20m ahead
and 2m to the
side without
errors. UI/UX
produces
warning when
object is
approaching
without
errors. Full
Machine
Learning
Model is used

Compatibility None of the
subsystems
are
compatible
with the
QHDT’s
design.

Only one
subsystems
of the
prototype are
compatible
with the
QHDT’s
design.

Two
subsystems of
the prototype
are
compatible
with the
QHDT’s
design.

All three
subsystems of
the prototype
are almost
compatible
with the
QHDT’s
design.

All three
subsystems of
the prototype
are
compatible
with the
QHDT’s
design.

Approach 1: Edge Impulse
For the first approach, the following scores were given for each category based on the

prototype’s performance, as shown in Table 3.

Table 3: The evaluation score of the first approach.

Criteria Safety Appearance Functionality Requirements Compatibility
Score 4/5 5/5 3/5 3/5 3/5

The first approach saw the creation of comprehensive mechanical and hardware designs that

would be easily manufactured using 3D printers. However, the FOMO model proved to be

inferior to YOLO and Edge Impulse was problematic during integration. The prototype provided

great insights into the requirements of a successful and robust machine-learning model, which

20

allowed for better understanding of training and testing processes of machine vision. Hence, the

model was scored high in terms of physical design but low on other categories, resulting in its

mechanical and hardware designs being implemented in the final product.

Approach 2: Python Application with Dedicated Hardware
For the second approach, certain information was successfully passed from the first approach,

leading to a better prototype. With knowledge of the first model, a better model was created from

scratch with each subsystem being much more compatible with each other. Although this led to

better performance on the microcontroller, it came with hindered accuracy causing lower

appearance and requirement scores on the evaluation matrix shown in Table 4. This model could

have been implemented into the design, however, it was ultimately abandoned and reiterated for

a much more accurate and effective model.

Table 4: Evaluation rubric for the second approach.

Criteria Safety Appearance Functionality Requirements Compatibility
Score 4/5 3/5 4/5 2/5 5/5

Approach 3: Python Application without Dedicated Hardware
For the third approach, an effective YOLO algorithm was implemented to detect objects in real

time with minimum delays. In addition to object detection, lane detection was made possible

using Canny Edge and Hough Transformation. A proper UI was also designed and successfully

implemented, making this prototype the strongest in terms of software performance. Beyond the

machine-learning models and UI, the software provides data storage capabilities and enables the

Hyperloop system to react to different events. The implementation of this advanced response

framework allows for easier integration of the camera system with existing control systems.

Table 5: Evaluation rubric of the third approach.

Criteria Safety Appearance Functionality Requirements Compatibility
Score 4/5 3/5 5/5 5/5 5/5

However, the prototype does not have a physical design that is better than the approach 1

prototype. It does have superior software capabilities and would theoretically be easier to

integrate with most existing hardware components. In the end, the software components of this

prototype were selected to move forward to be integrated into the final product.

21

Final Product
The integration of the third approach for its software-based object and lane detection along with

the first approach for its mechanical and hardware components resulted in the development of

the final product for real-time monitoring and safety enhancement in Hyperloop pods.

Approach three focused on the software aspect of the system, incorporating algorithms for object

and lane detection. The object detection algorithm utilized the YOLO algorithm, renowned for

its ability to swiftly detect objects within its field of view. This algorithm was trained using

datasets from platforms like Open Images Dataset, streamlining the training phase and enabling

the identification of specific objects. The lane detection algorithm incorporated a fusion of

algorithms, including Canny Edge detection and probabilistic Hough Transformations. This

algorithm effectively detected and tracked lane boundaries, contributing to enhanced navigation

and path planning for the Hyperloop pod.

Approach one focused on the mechanical and hardware elements of the system. It included the

sensor infrastructure and the embedded system. The sensor infrastructure served as a protective

case for the embedded system, ensuring the safety and durability of the camera module. The

embedded system consisted of a BalenaFin microcontroller, a Raspberry Pi camera module.

Although the BalenaFin had issues with implementation in the first approach, it was still

considered in the final product due to its higher processing power and extra memory storage over

a conventional Raspberry Pi.

22

Figure 17: Exploded view of the final system.

The integration of these approaches resulted in a powerful system that combines the capabilities

of real-time object and lane detection with potentially robust mechanical and hardware

components. The final product provides a user-friendly interface for monitoring the operation of

Hyperloop pods in real-time. The interface displays a live video feed captured by the pod’s

camera and provides updates on any objects detected in the camera feed. It also includes a status

bar that relays alert and warning messages, indicating potential obstacles or deviation from the

designated track. The combination of these approaches provided an effective solution for object

detection, lane detection, and user interface, ultimately improving the safety and efficiency of

Hyperloop transportation.

To use the final product on real Hyperloop pods, users can apply the same techniques to train the

model to identify new desirable objects and tracks. The physical system can then be mounted on

a pod and interfaced with existing control systems, which will work with the machine-learning

software to operate during transit. Ideally, the model would be trained to identify common

objects and issues with Hyperloop systems, so that the pod can pick up their presence during

operation and act immediately if necessary.

23

Figure 18: UI for the final system showing the live video feed, objects detected, and any notifications.

Results Discussion
By implementing a fully functional object and lane detection algorithm into an Hyperloop pod, a

safer environment is created for the user as well as a more reliable system. For further

improvement of the current design, it would be ideal to have focused on integration from the

start as it has caused problems with multiple approaches from the start as well as ensuring a

smooth process between subsystems. There should also be a stronger focus on the type of

hardware that is used as there have been some framerate and processing issues with previous

approaches. Lastly, it is recommended to retrain the model on better datasets to reflect new

environments, as different Hyperloop systems may include different features that would require

the model to adapt and conquer.

As stated earlier, the final design also does not have a reliable hardware system that allows for

the software functions to run optimally. The core problem is due to hardware integration issues

and performance, where chipboards cannot run the software to display information efficiently.

However, the software on its own can still perform on a computer using its webcam, which

provides proof of its functionality and effectiveness if an ideal hardware system is used. In the

future, a logical solution would be to combine hardware systems together to strengthen their

processing power, or simply find more powerful boards on the market. These solutions would

24

still sacrifice other aspects of the design, such as increasing space usage or costs. Lastly, a

critical assumption was made that the camera system and algorithm would be powerful enough

to function normally during high-speed conditions. This assumption remains to be tested as there

are no ways for the team to conduct a test with a fast vehicle easily.

The benefits of the systems are also to be seen. The main idea behind the various features of the

MVP is to allow more safety factors to be added to the pod instead of the infrastructure, which

typically would be the most expensive part of an Hyperloop project. By having the pod as a more

autonomous and effective maintenance or error forecasting tool, companies can save valuable

money on construction as failure detection tools are localized within the pods. Other functions

like lane detection can also help onboard control systems to better navigate through turns, which

can allow pods to run more autonomously and fare better against uncertainty.

When investigating similar topics, it is important to dive deeper into applications of machine-

learning in Hyperloop, as the technology behind it has been improving drastically over the past

few years. The costs of implementation have also decreased and could be widely used in many

ways beyond data science, which is critical for costly projects like Hyperloop systems.

Bibliography

[1] Queen's Hyperloop Design Team, "769 - Hyperloop Machine Vision Sensor System Project
Proposal," [Online]. Available:
https://onq.queensu.ca/d2l/le/content/675364/viewContent/4440713/View. [Accessed 2023 January
10].

[2] OpenCV, "Introduction - Open Source Computer Vision," [Online]. Available:
https://docs.opencv.org/4.x/d1/dfb/intro.html. [Accessed February 2023].

[3] "Edge Impulse," [Online]. Available: https://www.edgeimpulse.com/. [Accessed 3 March 2023].

[4] J. Davis, "Edge Impulse offers up FOMO algorithm, enabling object detection for
microcontrollers," 18 April 2022. [Online]. Available: https://www.edgeir.com/edge-impulse-
offers-up-fomo-algorithm-enabling-object-detection-for-microcontrollers-20220418. [Accessed
May 2023].

[5] "Keras - Get Started," [Online]. Available: https://keras.io/. [Accessed February 2023].

[6] "TensorFlow," [Online]. Available: https://www.tensorflow.org/. [Accessed February 2023].

[7] A. Naskar, "Add HTML and CSS in Flask Web Application," Think Infi, [Online]. Available:
https://thinkinfi.com/flask-adding-html-and-css/. [Accessed January 2023].

[8] NOAA, "What is lidar?," NOAA, [Online]. Available:
https://oceanservice.noaa.gov/facts/lidar.html#:~:text=Lidar%2C%20which%20stands%20for%20L
ight,variable%20distances)%20to%20the%20Earth.. [Accessed June 2023].

[9] V. Sichkar, "Train YOLO for Object Detection with Custom Data," Udemy, June 2022. [Online].
Available: https://www.udemy.com/course/training-yolo-v3-for-objects-detection-with-custom-
data/. [Accessed March 2023].

[10] M. Virgo, "Lane Detection with Deep Learning (Part 1)," Medium, 12 May 2017. [Online].
Available: https://towardsdatascience.com/lane-detection-with-deep-learning-part-1-9e096f3320b7.
[Accessed March 2023].

[11] "Open images dataset V7," Google, [Online]. Available:
https://storage.googleapis.com/openimages/web/visualizer/index.html. [Accessed March 2023].

	Statement of Originality and Contribution
	Abstract
	Research Question
	Overview of Motivation
	Presentation of Results

	General
	Description
	Environment & Objectives

	Research
	Introduction
	Topic & Motivation
	Background Information

	Methodology
	Approach 1: Edge Impulse
	Approach 2: Python Application with Dedicated Hardware
	Approach 3: Python Application Without Dedicated Hardware

	Results and Discussion
	Evaluation of Approaches
	Approach 1: Edge Impulse
	Approach 2: Python Application with Dedicated Hardware
	Approach 3: Python Application without Dedicated Hardware

	Final Product
	Results Discussion

	Bibliography

